MANUFACTURING PROCESS TECHNOLOGY I

Swayam Prabha Free DTH Channel for Education	SWAYAM Prabha Course Code- M20
PROFESSOR'S NAME	PROF. SHANTANU BHATTACHARYA
DEPARTMENT	Department of Mechanical Engineering
INSTITUTE	IIT Kanpur
COURSE OUTLINE	This is an introductory level course in Manufacturing Process Technology and is mostly meant for Undergraduate engineers. At the heart of any manufacturing system is a set of processes which change the size, shape and form of raw materials into the desirable thus giving an industrial nation the power of growing. This course is an introductory course for engineering professionals who would like to take up careers in manufacturing particularly at the process level and also for professionals who are already in manufacturing careers and would like to see the technological changes that the manufacturing processes have witnessed in the last about 5 decades.

COURSE DETAILS

S. No	Module ID/ Lecture ID	Lecture Title/Topic
1	M1L1	Introduction to Manufacturing Process Technology
2	M1L2	Structure of Matter (Bonding of Solids,Crystal Structures)
3	M1L3	Brief introduction of non-conventional machining processes
4	M1L4	Structure of matters (bonding of solids, crystal structures)
5	M1L5	Elastic and Plastic Deformation
6	M1L6	Crystal imperfaction and dislocation
7	M2L1	Plastic Deformation
8	M2L2	Material Properties, Stress Strain Diagram for differnt types of materials

9	M2L3	Friction and Wear, Solid solutions
10	M2L4	Equilibrium Phase Diagram
11	M2L5	Iron-carbon equilibrium phase diagram
12	M2L6	Control of material properties (Alloying and heat treatment), Mechanical properties and Recrystallization
13	M3L1	Introduction To Casting Process
14	M3L2	Pattern and Mold Design
15	M3L3	Mold Making Procedures
16	M3L4	Fundamentals of Melting and Furnaces & Pouring and Gating Design
17	M3L5	Vertical and Bottom Gating Systems Edit Lesson
18	M3L6	Numerical Estimation To Find Mold Filling Time and Mold Design
19	M4L1	Effects of friction and velocity distribution in time of filling
20	M4L2	Numerical design of gating systems using frictional and bending losses
21	M4L3	Principle of cooling and solidification in single and multiphase systems
22	M4L4	Estimation of rate of solidification
23	M4L5	Principles of cooling and solidification of casting
24	M4L6	Modeling of Solidification Rates of Thin Casting in a Metal Mold
25	M5L1	Solidification with Predominant Interface Resistance
26	M5L2	Solidification with Constant Casting Surface Temperature
27	M5L3	Solidification of Casting with Predominant Resistance in Mold and Solidified Metal
28	M5L4	Solidification Time for Permanent Mold Casting
29	M5L5	Solidification with Constant Casting Surface

30	M5L6	Riser Design and Placement
31	M6L1	
51		Riser Design and Placement Part 2
32	M6L2	Riser Design and Placement Part 3
33	M6L3	Introduction of Machining Processes
34	M6L4	Review of Basic Machining Processes and the Mechanics of Chip Formation
35	M6L5	Estimation of Cutting Ratio and Shear Angle
36	M6L6	Merchant's Force Analysis
37	M7L1	Merchant Theory (Cutting Forces Analysis)
38	M7L2	Merchant Theory (Force analysis) Part-2
39	M7L3	Lee Shaffer's Solution
40	M7L4	Specific Energy Model for Cutting
41	M7L5	Modeling of Heat Generation and Cutting Tool Temperature
42	M7L6	Temperature in Cutting and Builtup Edge Formation
43	M8L1	Metal Cutting Operation
44	M8L2	Tool life and Tool wear
45	M8L3	Economics of Machining
46	M8L4	Joining Process
47	M8L5	Principle of Solid State Welding
48	M8L6	Numerical Design of Welding Power Sources in Arc Welding

References if Any: