

Nonlinear Vibration

Swayam Prabha Course Code – M62

PROFESSOR'S NAME	Prof.S.K. Dwivedy		
DEPARTMENT	Department of Mechanical Engineering		
INSTITUTE	Indian Institute of Technology Guwahati		
COURSE OUTLINE	Department of Mechanical Engineering Indian Institute of Technology		
COURSE DETAILS			

S. No	Module ID/ Lecture ID	Lecture Title/Topic
1.	Module1_L1	Introduction of Nonlinear Systems
2.	Module1_L2	Conservative and Non Conservative System
3.	Module1_L3	Commonly Observed Phenomena in Nonlinear Systems
4.	Module1_L4	Phenomena Associated with Nonlinear Systems
5.	Module2_L5	Force and Moment Based Approach
6.	Module2_L6	Lagrange Principle and Hamilton's Principle
7.	Module2_L7	Some Equation of Motion for Some Other System
8.	Module2_L8	Development of Equation Of Motion For Continuous System
9.	Module2_L9	Development of Equation of Motion for Continuous Systems and Ordering Techniques
10.	Module2_L10	Ordering Techniques
11.	Module3_L11	Straight Forward Expansions
12.	Module3_L12	Solution of Nonlinear Equation of Motion Using Numerical Technique and Straight Forward Expansion Method.
13.	Module3_L13	Lindstedt Poincare Method
14.	Module3_L14	Method of Multiple Scales
15.	Module3_L15	Method of Harmonic Balance
16.	Module3_L 16	Method of Averaging
17.	Module3_L17	Generalized Method of Averaging
18.	Module3_L18	KBM Method of Averaging
19.	Module3_L19	Incremental Harmonic Balance Method, Intrinsic Multipleharmonic Balance Method
20.	Module3_L20	Modified and Extendedlindstedt- Poincaretechnique
21.	Module4_L21	Stability and Bifurcation of Fixed-Point Response
22.	Module4_L22	Stability and Bifurcation Analysis of Nonlinear Fixed Point Responses

		Bifurcation
24.	Module4_L24	Static and Dynamic Bifurcation
25.	Module4_L25	Stability and Bifurcation Analysis of Periodic Responses
26.	Module4_L26	Bifurcation of Periodic Response, Introduction to Quasi-Periodic and Chaotic Response
27.	Module4_L27	Bifurcation of Periodic Responses-Introduction to Quasi-Periodic and Chaotic Responses
28.	Module5_L28	Time Response, FFT, Frequency Response Curves
29.	Module5_L29	Numerical Methods to Obtain Time Response
30.	Module5_L30	Frequency Response Curves
31.	Module6_L31	Single Degree of Freedom Nonlinear Systems With Cubic and Quadratic Nonlinearities
32.	Module6_L32	Nonlinear Vibration of Single Degree of Freedom System with Damping
33.	Module6_L33	Free Nonlinear Vibration of Multi-Degree-of- Freedom System
34.	Module6_L34	Nonlinear Forced-Vibration of Single-Degree- of-Freedom System
35.	Module6_L35	Nonlinear Forced-Vibration of Single and Multi Degree-of-Freedom System
36.	Module6_L36	Nonlinear Forced-Vibration of Single and Multi- Degree-of-Freedom System
37.	Module6_L37	Nonlinear Forced-Vibration of multi-Degree-of- Freedom System
38.	Module6_L38	Nonlinear Vibration of Parametrically Excited System
39.	Module6_L39	Parametrically Excited System Elastic and Magneto Beam Subjected to Periodic Base Excitation
40.	Module6_L40	Nonlinear Vibration of Parametrically Excited System with Internal Resonances

List of reference material/ books:

Nayfeh, A. H., and Mook, D. T., Nonlinear Oscillations, Wiley-Interscience, 1979.

Hayashi, C. Nonlinear Oscillations in Physical Systems, McGraw-Hill, 1964.

Evan-Ivanowski, R. M., Resonance Oscillations in Mechanical Systems, Elsevier, 1976.

Nayfeh, A. H., and Balachandran, B., Applied Nonlinear Dynamics, Wiley, 1995.

Seydel, R., From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis, Elsevier, 1988.

Moon, F. C., Chaotic & Fractal Dynamics: An Introduction for Applied Scientists and Engineers, Wiley, 1992.

Rao, J. S., Advanced Theory of Vibration: Nonlinear Vibration and Onedimensional Structures, New Age International, 1992.

Name and contact details of two referees for the course: