

Advanced Gas Dynamics

Swayam Prabha Course Code: M64

PROFESSOR'S NAME	Prof. Rinku Mukherjee	
DEPARTMENT	Department of Mechanical Engineering	
INSTITUTE	Indian Institute Of Technology Madras	
	This course introduces the concepts of the primary differences between an incompressible flow and compressible flow. It draws the connection between compressible flow and speed of sound, Mach Number and thermodynamics. It then builds on the governing equations to derive the commonly known equations and tackles both 2D and 3D problems. The physical concept of shocks and the resulting changes in the thermodynamic properties of a fluid form a major part of this course. The course concentrates primarily on the understanding of the physical concepts of compressible flow and keeps reference to various numerical methods for solving the governing equations to a minimum.	

COURSE DETAILS

S. No	Module ID/ Lecture ID	Lecture Title/Topic
1.	L1	Introduction to Gas Dynamics & Review of Basic Thermodynamics
2.	L2	Review of Basic Thermodynamics Continued
3.	L3	An introduction to Normal Shocks
4.	L4	The Mach Number and Compressible Flow
5.	L5	The relation of physical properties across a normal shock
6.	L6	Normal Shock in a duct: Throat and Reservoir conditions
7.	L7	Example Problems in Normal Shocks
8.	L8	An introduction to Oblique Shocks

0	10	
9.	L9	The relation of physical properties across an oblique shock
10.	L10	Example Problems in Oblique Shocks
11.	L11	Pressure - Deflection relationship of Shocks
12.	L12	An introduction to Expansion waves
13.	L13	Area - Mach Relationship
14.	L14	Unsteady Shock Waves: The Shock Tube
15.	L15	The Shock Tube: Propagating Normal Shock and its reflection from end wall
16.	L16	A review of wave propagation
17.	L17	Wave propagation: Small Perturbation Theory
18.	L18	Finite Wave Theory: An introduction to the Method of Characteristics
19.	L19	The Shock Tube: Propagating Expansion Fan
20.	L20	The Method of Characteristics
21.	L21	Application of The Method of Characteristics: Design of a minimum length nozzle
22.	L22	Application of The Method of Characteristics: Flow through a diverging channel
23.	L23	Flow over a Wavy wall: Formulation using Perturbation Theory
24.	L24	Subsonic Flow over a Wavy wall
25.	L25	Supersonic Flow over a Wavy wall - I
26.	L26	Supersonic Flow past a 3D Cone: Axisymmetric/Quasi 2D Flow
27.	L27	Quasi 2D Flow - I
28.	L28	Quasi 2D Flow - II
29.	L29	Similarity Rules and Transformed Coordinate System
30.	L30	Critical Mach Number and Thin Airfoil Theory
31.	L31	Example Problem using Thin Airfoil Theory
32.	L32	Example Problems – I
33.	L33	Example Problems – II

34.	L34	Example Problems - III
35.	L35	Supersonic Flow past a 3D Cone at an angle of attack
36.	L36	Supersonic Flow past a 3D Cone at an angle of attack: Flow Visualization - I
37.	L37	Supersonic Flow past a 3D Cone at an angle of attack: Flow Visualization - II
38.	L38	Supersonic Flow past a 3D Cone at an angle of attack: Governing Equations
39.	L39	Supersonic Flow past a 3D Cone at an angle of attack: Numerical Procedure
40.	L40	Supersonic Flow past a 3D Bluff Body at an angle of attack

List of reference material/ books:

- 1. Elements of Gas Dynamics, H. W. Liepmann and A. Roshko
- 2. Modern Compressible Flow, John D. Anderson, Jr.

Name and contact details of two referees for the course: