

Convective Heat and Mass Transfer

Swayam Prabha Course Code – M83

PROFESSOR'S NAME	Prof. A.W. Date
DEPARTMENT	Department of Mechanical Engineering
INSTITUTE	Indian Institute of Technology Bombay
COURSE OUTLINE	This course assumes that the students have undergone UG courses in Engineering Mathematics, Thermodynamics, Heat Transfer and Fluid Mechanics and are familiar with the use of experimentally derived CORRELATIONS for estimating heat/mass transfer coefficient in a variety of flow situations. The purpose of this course is to justify the basis and the form of these correlations on the basis of fundamental transport laws governing heat/mass transfer. The treatment is highly mathematical and, through assignments, students are expected to formulate and solve problems to derive expressions for the heat/mass transfer coefficient in different situations. The course will interest students wishing to embark on a research career in heat/mass transfer.

COURSE DETAILS

S. No	Module ID/ Lecture ID	Lecture Title/Topic
1.	L1	Introduction to Convective Heat and Mass Transfer
2.	L2	Flow Classifications
3.	L3	Laws of Convection
4.	L4	Scalar Transport Equations
5.	L5	Laminar Boundary Layers
6.	L6	Similarity Method
7.	L7	Similaity Solution to Velocity BL
8.	L8	Similaity Solution to Temperature BL - I

	10	1
9.	L9	Similaity Solution to Temperature BL - II
10.	L10	Integral Equations of BL
11.	L11	Integral Solutions to Laminar Velocity BL
12.	L12	Integral Solutions to Laminar Velocity BL
13.	L13	Superposition Theory and Application
14.	L14	Laminar Internal Flows
15.	L15	Fully-Developed Laminar Flows - I
16.	L16	Fully-Developed Laminar Flows - II
17.	L17	Fully-Developed Laminar Flows Heat Transfer - I
18.	L18	Fully-Developed Laminar Flows Heat Transfer - II
19.	L19	Laminar Developing Heat Transfer
20.	L20	Superposition Technique
21.	L21	Nature of Turbulent Flows
22.	L22	Sustaining Mechanism of Turbulence - I
23.	L23	Sustaining Mechanism of Turbulence - I
24.	L24	Sustaining Mechanism of Turbulence - II
25.	L25	Near-Wall Turbulent Flows - I
26.	L26	Near-Wall Turbulent Flows - II
27.	L27	Turbulence Models - I
28.	L28	Turbulence Models - II
29.	L29	Turbulence Models - III
30.	L30	Prediction of Turbulent Flows
31.	L31	Prediction of Turbulent Heat Transfer
32.	L32	Convective Mass Transfer
33.	L33	Stefan Flow Model
34.	L34	Couette Flow Model
35.	L35	Reynolds Flow Model
36.	L36	Boundary Layer Flow Model
	I .	,

37.	L37	Evaluation of g and Nw
38.	L38	Di ffusion Mass Transfer Problems
39.	L39	CONV- MT Couette Flow Model
40.	L40	CONV MT Reynolds Flow Model - I
41.	L41	CONV MT Reynolds Flow Model - II
42.	L42	Natural Convection BLs
43.	L43	Diffusion Jet Flames

List of reference material/ books:

Kays W M and Crawford M E, "Convective Heat and Mass Transfer", McGraw Hill Int Edition, 3rd edition, 1993.

Spalding D B, "Introduction to Convective Mass Transfer", McGraw Hill, 1963.

Bird R. B., Stewart W. E. and Lightfoot E. N., "Transport Phenomena", John Wiley and sons, Inc., 1960.

Schlichting H., "Boundary Layer Theory", Sixth edition, McGraw Hill, 1968.

Name and contact details of two referees for the course: